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PREFACE

This essay is written for research workers in the behavioral

sciences. My assumptions regarding this intended audience *have several

implications for the characteristics of the paper. First, it is not

aliaumed that research workers have great proficiency in the logical

manipulation of symbols. Hence, this is no place for advanced mathemats.

Leal and statistical niceties - rigorous, general, and aesthetically

pleasing though they may be. Furthermore, derivations are carried out

in great detail and accompanied by extensive exposition. The aim of

the paper, although it may be contradictory, is to deValop an informal,

intuitive rationale of the material for the reader which. parallels the

formal, rigorous reasoning behind the topics. If this goal is attained,

then the researcher should be able to confidently apply the methods to

his own empirical problems. Finally, this paper is symbolic of my faith

that, for at least certain areas of behavioral science inquiry, the

relevant question is no longer "What variables are important ?" but

"How are the important variables related?" It is my belief that the

methods presented in this paper are appropriate to the latter question.

On the other hand, straightforward application of statistical principles

of estimation and tests of significance are probably more relevant to

the former.

It is with great pleasure that I acknowledge my indebtedness

to Drs. John Pierce-Jones and Grover Cunningham of the Child Development

Evaluation-Research Center for the time to do this research. Because



of the pressure to produce "significant" empirical findings experienced

in many behavicra; science research centers, the work directive to "be

creative" methodologically is all too infrequent. Although I make no

claim to origination of any of the notions in this paper, their synthesis

herein from diverse sources is my response to the above-mentioned stint-

ulus. This implies, of courses that I =responsible for any errors in

the presentation..

Kenneth C. Land
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ON TIM INTERPRETATION OF SILTIVARIATE SUMS

Kenneth C. Land

This paper constitutes a systemmatic introduction to two prom

cedures which have been developed to aid the representation and inter

prepition of multivariate statistical systems m path analysis and recur-

sive systems of equations. The first section defines path models and

path diagrams. It also develops two elementary applications of the prom

ceduri. In the second,section, the representation ofitatistieal sysm

tems by recursive sets of equations is discussed. Finally, the third

section of the paper builds on notions of the two preceding sections by

extending path analysis to highly complex systems of relations.

The author has attempted to provide both a systemmatic and,

to soma extent, complete discussion of the topics. Therefore, two

appendices review the basic mathematics of lust- squares correlation

and regression. If the reader has difficulty understanding the main

body of the paper because he hai forgotten some 74asic statistics/ no

tions, he may read the appendices and then return to the main sections

of the essay. Furthermore, the author etas attempted to show that the

notions of path analysis, at lust for the systems discussed in this

paper, follow directly from the basic statistical notions of least-

squares correlation and regression. Finally, a main goal of the pap-

er is to develop enough basic understanding on the part of the reader
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that he may proceed to utilise the method in his awn area of research.

Therefore, although the discussion and derivations are on an elemen-

tary level, they are accompanied by detailed exposition to provide at

least an intuitive and informal understanding of what is really going

016

Sections /1 Path Analtaks.

The iety of path analysis or path coefficients was devel-

oped by the geneticist Sewall Wright in a series of general essays

(raiibt, 1921, 1934, 1954, 1980a, 1960b) as an aid to the quantita-

tive development of genetics. Wright stated the primary purpose of

the method in his first general account (1921) as followst

The present paper is an attempt to present a me-
thod of measuring the direct influence along each
separate path in such a system and this of find-
ing the degree to which variation of q. given ei6
fact is determined by each particular cause. The

method depends on the combination of knowledge of
the degree of correlation among the variables in
a system with such knowledge as may be possessed
of the causal relations. In cases in which the
causal rotations are uncertain, the method can be
used to find the logical consequences of any
particular hypothesis in regard to them.

Wright elaborated the purpose of the method in subsequent papers!

... the method of path coefficients is not in-
tended to accomplish the impossible task of de-
ducing causal relations from the values of the
correlation coefficients. (1954) Path an-
alysis is an extension of the usual verbal in-
terpretation of statistics not of the statS.s-

tics themselves. It is usually easy to give a
plausible interpretation of any significant sta-
tistic taken by itself. The purpose of path an-
alysis is to determine whether a proposed set of
interpretations is consistent throughout. (1960b)
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So much for the intentions of the method. Let us begin by developing

the basic notions of path analysis. From that point, we shall develop

a few simple, almost trivial, applications of the path notions. Fin`

ally, we shall, after the introduction of some additional notions in

the next section of the paper, proceed to the path analysis of complex

systems of relations on variables in which the advantages of the pro-

cedure begin to accumulate in such a manner as to make path analysis

worth the effort of becoming proficient in the method.

1.1. Path Models and Path Diagrams. We begin by restricting,

the application of the method to sets of relationships *mom variables

which are (1) linear, (2) additive, and (3) asymmetric. Furthermore,

the variables must be measurable or be conceived as measurable on an

interval, scale, although some of them may not actually be measured. We

shall return to these assumptions at the and of the paper.

In such systems of relationships, a subset of the variables

.........itistaltaxuleteaulumita on the remaining variables, which are

assumed to be independent. That is, the total variation of the Lade-

spends= variables is-assumed to be caused by variables outside of the

set under consideration. We may refer to such variables as "exogenous."

The exogenous variables in a particular set may be correlated among

themselves; however, the explanation of their intercorrelation is not

a problem for the system under consideration. The subset of variables

which are taken as dependent variables, in the total set may be termed

"endogenous" variables. In contrast to the exogenous subset of vari-

ables, the total variation of the endogenous variables is assumed to
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be c letel determined b some combination of the variables in the s s

tem. Note that this implies that, in some path models, a subset of the

endogenous variablesmax be conceived to have causal effects on other

tadogenous variables in addition to the direct effects of the exogenous

variables. Furthermore, in those syitems of relationships where an en-

dogenous variable is not completely determined by prior (exogenous or

endogenous) measured variables, a residual variable uncorrelated with

the-set of variables immediately determining the variable under con-

sideration is introduced to account for the variance of the dependent

variable not explained by measured variables. The basic assumptions of

path analysis have been reviewed in these two paragraphs. Because they

are so basic, the reader may find it useful to re-read the assumptions

several times as the method is developed below.

The notion of the Rath diagram was developed by Wright (1921,

1934, 1960a) to provide a convenient representation of those systems

of relations which conform to the assumptions of the above paragraphs.

Path diagrams are drawn according to the following conventions:

(1) The postulated causal relations among the variables of

the system are represented by uni-directional arrows extending from

each determining variable to each variable dependent on it.

(2) The postulated non- causal correlations between exogenous

variables of the system are symbolised by two-headed curvilinear arrows

to distinguish them from causal arrows.

(3) Residual variables are also represented by uni-directional



arrows leading from the residual variable to the dependent variable.

However, literal subscripts are attached to residual symbols to indi-

cate that these variables are not measured.

(4) Finally, the quantities entered beside the arrows on a

path diagram are the symbolic or numerical values of the p.atidcor...

relation coefficients of the postulated relationships. The symbolic

form of the path coefficient is Pii, where the first subscript i de-

notes the dependent variable and the second subscript j denotes the

variable whose determining influence is under consideration. Note

that, since we are considering only ammetric causal relations, the

coefficients Pij and willwill never appear in the same path diagram

together, i.e., Aft Pij or Pit but never both will be postulated in

a given system. Furthermore, the coefficient Pij will, ordinarily be

a partial path coefficient; however, we do not denote the variables

held constant after a dot as with ordinary lea squares partial re-

gression and correlation coefficients. They will usually be obvious

from the path diagram.

In this paper, we shall use the term path model to refer to

the regression equation or set of regression equations which repre-

sents the postulated causal and non causal relationships imouiv the

variables under consideration. LpapserMsLEst........diaams which con-

form to the above rules of representation is an isomorphism with the

algebraic and statistical properties of the postulated system of re-

lationships. In other words, there is a one- to-one correspondence be-

tween the postulated causal and non-causal relations of a path model
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FIGURE 1.

and its path diagram. This property and its usefulness will become more

o17ious as we develop the method. As an illustration of the conventions

of path diagrams, we have a possible system in Figure 1.

1.2. Path Coefficients and Path Since all rely

tions are assumed to be linear, we may write the dependent relationship

of X1 on X20 X30...,Xn, and residual iii, in rawusscore form as follows:

xi sa c12x2 00,1E3 + + cut% + ciax. (1.1)

or in deviation-units, we have

at c12(X24412) + c13(13-115) + + cin(Xn-%) +

cia(Xa-Na)

where Mi is the mean of the ith variable. Letting xi (xi -ML), this is

21 elm + c13z3 + + gen + cut% (1.2)



It is often more convenient to utilise Bach variable in standard -snit

form. Let Zi = (Xi-MO/Si and Pli = cli(Si/S1)) where Si denotes the

standard-deviation of the ith variable. Then formula (1.2) becomes

Z1
mi P102 P1e3 e

PinZn PlaZa (1. 5)

The coefficients cm) etc.) where the first subscript denotes

the dependent variable while the second subscript denotes the indepen-

dent variable) are of the type of partial regression coefficients but

may exist in a system with unmeasured hypothetical variables in addition

to the residual variable. Hence) we shall refer to them as ,path regres-

sion coefficients. Also) the standardised coefficients Pl2) etc.) are

of the type called path coefficients or standardized _path coefficients,.

laci2.........Afacie.............iathcontmeasures the fraction of the standard deviation of

the dependent variable (with the appropriate sign) for which the data,-

nated variable is,directly responsible in the sense of the fraction which

would be found if this factor varies to the same extent as in the ob-

served data while all other variables (including residual factors) are

constant (Wright) 1934). This definition (except for determination of

sign) can be written as followst

P12
S2=

1

Sl*P3...n)a

S2* 34...npa

c12
(1.4)
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where S
ijk...npa

indicates the standard deviation of the ith variable

with variables j through n and residual variable a held constant. Given.

this definition of the path coefficient, it is obvious that the squared

of the variance

path coefficient measures the portion4of the dependent variable for which

the independent variable is directly, responsible.

Now that we have introduced the definition of path coefficients

and path regressions, the alert reader will immediately note a similarity

of pLch regressions to ordinary least-squares partial regression coeffi-

cients and a similarity of path coefficients to least..squares standardised

partial regression coefficients or beta weights as discussed in the two

appendices.of this paper. It is true that for certain kinds of systems

of relationships the path coefficsAnts and regressions are identical to

the least-squares estimators. However, this is not true in general (see

Wright, 1934, 1954, 1960a). It will be our task to develop the method

of path coefficients0411,::ter.thesietcases in which path coefficients and

regressions are identical to the least- squares estimators for correlation

and regression coefficients in the remsilider of this paper. We shall find

that path analysis yields information about a statistical system which

helps render an interpretation possible. It does so, not by additional

statistical analysis, but primarily by forcing the researcher to utilise

all of the informatio% at his disposal. We proceed to develop the pro-

cedure for elementary applications.

1.3. The Bivariate Path Model. The simplest type of relation

to which path analysis may be applied is the case of a dependent variable



X2, independent or exogenous variable XI, and residual variables Xit and Xbt

x2 = caxi + caxb

or, in standard-form, the path model is

22 um 22121 P2gb
(1.5)

This is sinrly a case of bivariate least-squares regression with explicit

consideration of the residual term. Figure 2 is a path diagram dor this

model. Note that, since Z1 is considered exogenous, P
la m

1. i.e.p the

total variation of Z1 is caused by unmeasured variables or variables outside

the present model. Because this is true for all exogenous variables, sym'

bola for their residuals and residual path coefficients are often dropped

from the diagram in the interest of neatness of representation.

In this model, as shown in Table 1, the least- squares estimator

for the path cefficient P21 is the correlation coefficient r21 which is

also equal to the beta weight in the bivariate case as is shown in the

first appendix of this paper (section A.1,1.). Hers, as in the appendices,

we symbolise least-squares standardised partial regression coefficients

or beta weights by
j

since we do not have a Greek letter for beta on our

keyboard. Now, let us consider the estimate and meaning of the residual

path coefficient. Since Zb is independent of Zl (it was stated earlier

that the residual is independent of the imediate predictors in a model

and this also follows from leastsquaree; estimation principles), we know

by the same principle as for Z1 that r2b = = Pa. However, since the

residual represents all variables outside the system which cause variation

in Z2, it is unmeasured and we do not have a direct estimate for Pa.



FIGURE 2.

TA4p1 it ESTIMATORS OF PATH COEFFICIENTS FOR THE DIVARIATE PATH *)DEL

Path Model* Z2 go P201 + P2Ob

P21
3.*

21 r21 21
2

r22 st 1 Pat + P
2

2 '
in V 1 1 P2

V------
1 rr

121

Therefore, we must estimate it indirectly by utilising the fact that the

squares of P21 and P2b must sum to unity. That is) since the square- of

each of P21 and Pm is the proportion of the variance of Z2 explained by

Z1 and Zb, respectively, and the variables are independent, the sum of the

proportions must be unity. Hence, P2b is the square root of the quantity -

2 2
one minus Pm or one minus r21 - as is shown in Table 1. This lOoks famil-

iar. It is in fact whatve define as the coefficient of aliftation in

the first appendix of the paper (section Now we see the first

contribution of path analysis to the interpretation of regression *vs-

temss It provides a convenient and logically sound interpretation of

the coefficient of alienation as the path coefficient of the residual

term in the regression equation. It may be shown that the residual variable



has a sero mean and unit variance or standard deviation since we have con-

ceived of all of the variables as being in standard-form. Hence, it may

be helpful for the reader to think of the residual as a chiymm variable

having unit variance and.xero mean and representing all unmeasured vari-

ables which cause variation in the dependent variable. The residual path

cesgaciegt, then, 142,...pr.......2...LututtA..........Lerortinottandrddeitionts

square is the orclportOn, of the variance" of the dependent variable which

As caused by 41 (unmeasured) variables outside of the set under consider..

ation in the path model. It should be noted that this interpretation of

the residual path coefficient is consistent with the derivations in Ap-

pendix I of the paper (equations A1.9, A1.10, and A1.11). However, the

hard-nosed reader who does not trust the above logic may easily demon..

strata the relation in a specific empirical case. If he has a computer

regression program available, he may simply predict a criterion variable

from a predictor variable, print out the residual variable, and thesprem

diet the criterion from the residual. The beta weight in the second pre-

diction should be comparable to the square root of one minus r-square in

the first prediction.

1.4. The Multivariate Path Model. We shall now extend path

analysis to the multivariate case. Consider a path model in which an

endogenous variable Z3 is dependent upon exogenous variables ZI and Z2

and a residual variable Za

Z3 ' 1131Z1 + P32;2 P3aZa

A path diagram of this model is given in Figure 3, and the estimators
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FIGURE 3.

TABLE 2: ESTIMATORS OF PATH COEFFICIENTS FOR THE )IULTIVARIATE PATH MODEL

OF FIGURE 3.

St disad th icient

(1) Path Model for Figure 3: Z3 so P31Z1 + P32Z2 + P3aZa

r31
* P31 + P32

r32
P31 r

12 + P32

r12 given

2
r33 = 1 u P

31
r
31

+ P
3
2r32 + P

3a

P32 = I - P
31
r
31

+ P
32

r32 se 1 - R
2

T77--
P3a

Path Re re:salon Coefficients

(a)

s.
(10)

b
31

c
31

+ c32b21

b32 c31b12 c32

b21 and b12 given



for the path coefficients and path regressions are shown in Table 2.

There are a number of important principles to be gained from

an analysis of Figure 3 and Table 2. First, let us derive.the relation

of the standardised path coefficients Pij and the path regression co-

efficients cij to the least-squares correlation coefficients rij and

regression coefficients bij. For example, take the case of the path

coefficient P31. We are given

r31 m P31 P32r12

so, by substracting P32r12 from both sides we have

P31
r31 P32r12

By the same principle, P32 au r32 Purir So, by substitution

P51 - r31 (r32 P31r12) r12

"31 r32r12 P31r12r12

Then, by subtracting P5142 from both sides of the equation, the equation

(1.6)

becomes

P
51

Pibr2 r
31

r3 2r
1212

or, by factoring out P31 on the left-hand side,

2 %

P31 (1 r12 ) r31 r32r12

whence, by dividing both sides by ( 1 r12 ), we have

P31 al
r31 r32r12

1 -
r12

In this form4 P31 bears immediate similarity to formula (A2.2) and is, in

fact, identical with the least squares estimator for the standardised par-

tial regression coefficient. We may derive a similar formula for the path



regression coefficients eq. she derivation for c31 is as follows:

b31
c51

+ c32b21

c31 b31
c32!)21

b31 - (b32 - c31b12) b21

b31 b32b21
+ cub 12021

- c31b12b21 ' 1)31 b32b21

c31 (1 1'12°21 )
b31 1)32°21

C31 al b31 °32!/21

1 - bt2b21

(1.8)

Again, in this form, cm is identical to the least-squares estimator for

partial regression coefficient in raw- or deviation-score form as given in

Appendix formula (A2.5). The above two derivations demonstrate that for

the multivariate path model, of which Figure 3 is a special case, the

ath coefficients and ath re essions are e uivalent to the least-scam

estimators for the standardised and raw- or deviation -score partial re-

gression coefficients, respectively.

A second principle that emerges from Figura 3 and Table 2 is

illustrated by formulas (2) and (3) of Table 2. We know that we are giv-

en the correlations of the exogenous variables in any path model (r12 in

Figure 3) and we are not interested in them. But formulas (2) and (3)

show the basic composition of the correlation of each exogenous variable

with the endogenous variable. Let us explore the derivation of, say,

formula (3). By definition of the correlation coefficient for variables



in standard-score form, we have

r31 = (1 /N) E Z3Z1

-15-

( 1. 10 )

where the summation is over all observed Z-values for variables 1 and 3.

The convention regarding summations followed in this paper is that, if

a summation index ie not proided, the summation is over observed values;

otherwise, a summation index and explanatory note will be provided. Re-

garding (1.10), we know that Z3 - the standard-score form of the criterion

variable - is totally dependent upon Z1, Z2, and Za. Hence, by substitu-

tion from formula(1) of Table 2 - the path model, we have

r31 = (1/N) E Zl (P31Z1 + P302 + P3aZa) (1.11)

or, by expansion,

= (1/N) (P3l E Z1Z1 + P32 E Z1Z2

2
in P31 E ZI + P32 E Z1Z2 +

N

P3a E Z1Za)

P
3a

E Z1Za

N N
(1.12)

and since (1) the sum of the squares of standard-scores for a variable is

unity, (2) the sum of cross-products of standard-scores for two variables

is the correlation coefficient of the variables, and (3) the correlation

of the residual Za with an immediate determining variable of Z3 is sero,

(1.12) reduces to

r31 = P31 + r
12
P
32

(1.13)

and we have derived equation (2) of Table 2.

There are several insights to be derived from (1.13). F- irst,

it implies that, for a multivariate path model, the correlation of an
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exogenous variable and the dependent variable is .the scan of the direct

effect via its path coefficient from that exogenous variable to the de-

pendent variable and its indirect effect(e) through its correlation with

the other exogenous variable(s) as measured by the product of the correlation

coefficient of the two exogenous variables and the path coefficient of

the latter variable. aids is a second contributicludjmalugania12

the interpretation of regression systems: It provides an interpretation

of the correlation of a predictor and the criterion as a sum of direct

and indirect effects. This interpretation is certainly not obvious from

the typical formulasfor the correlation and beta coefficients: Of

course, a similar type of interpretation holds for formulas (8) and (9)

of Table 2 regarding total and partial regression coefficients in raw -

or deviation -score form.

Let us look again at formula (1.13). If the total correlation

between the exogenous variable Z1 and the endogenous variable Z3 is made

up of a sum of direct and indirect effects, and if the direct effect is

estimated by P31, then the indirect effect must be estimated by riew

or in a more generally applicable form:

Total Indirect Effect (TIE)

of Z
1

on Z3 r31 P31
(1.14)

Thus, we have an example of the third contribution of Rath analysis to

the interpretation of regression systems: It provides a general proce-

dure for exploring the indirect effects of an independent variable on a

dependent variable in a multivariate path model. This contribution will

become more interesting as the path models become more complex.
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Equation (5) of Table 2 may be viewed as a special case of (2)

and (3) - the case of complete determination of the dependent variable.

Let us explore the derivation of this equation. We know, as before that

the formula for the correlation of Z3 with itself ist

r33 1 (1/N) E Z3Z3

By substitution of formula (1) of Table 2, this becomes

r33
a 1 = (1/N) E Z3 (P31Z1 + P302 + PtaZa)

= (1/N) (P31 EZ3Z1 + P32 EZ3Z2 + P3aZ3Za)

= P31 E Z3Z1 + ;P32 E Z3Z2 + P3a E Z3Za

N N N

(1.15)

For the same reasons as given above for the derivation of (1.13) and the

fact that, since Za is independent of ZI and Z2, r3a = P this becomes

2
r33 = 1 = P31r31 + P 0'32 + P3a

2 2
E P3ir3i P3a

(1.16)

which is (5) of Table 2. This equation may be further expanded by the

substitution of values for r31 and r32 as follows

r33 al 1

P31(P3I+P32r12) P32(P31r111432) Pga

.
P31P32r12 P32P31r12

+ P32 +
P:a

E 2
22

3i 2 E p p

i=1 k4mil 3i 31C jk
P2 (k>j) (1.17)
30

where the range of j and k$ (k>j)$ includes all measured yariables.
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Let us examine implications of

F irst, note that the single summation in (1.16) is equal to the sum of

the two summations in (1.17). Second, note that (1.17 is identical to

equation (A2.13) of Appendix Two except for the explicit consideration of

the residual path coefficient squared - P3a. This implies that the sum

of the two summations in (1.17), and, therefore, the single summation in

(1.16), is equal to R2 - the square of the multiple correlation co-

efficient for the path model. This means that we can derive a simple

formula for the computation of the residual path coefficient as follows:

2

pia

2
13a E P3ir3i

2 2 2
1 E Pti + 2 E P Pie

jk ( 11>i )

inl kpjn1

R
2

SOp

P3a V1 al R2

ea.

(1.18)

Athirdlicconcerns the important problem

of the interpretation of _the.path coefficients in the multivariate pAth

model: Equation (1.17) shows that the total variance of Z3 is a sum of

the squares of each path coefficient plus a term which measures the cor-

relational influence of the exogenous variables. Or, in other words, by

multiplying both sides of (1.17) by it it may be seen that the squared

2
path coefficients maaaure the portions of S3 that are determined directly

by the exogenous variables while the other summation (which may be nega-

tive) measures correlational determination. Now we come to ("unique
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characteristic of multivariate path coefficients. or beta weights as op-

posed to their bivariate counterparts: Whereas bivariate path or beta

coefficients, since they are identical with the correlation coefficient,

are bounded by + and - 1.0, the multivariate path coefficients may ex-

ceed + 1 or - 1 in absolute value; hence, the square of a multivariate

path coefficient may exceed + 1. This would seem to indicate that the

independent variable with a path coefficient-squared greater that 1.0

causes more than 100 per cent of the variance in the dependent variable.

But this is impossible. So the question is: How does one interpret a

squared multivariate path coefficient greater that 1.0? Wright (1960a)

gives the following interpretation:

Such a value shows at a glance that direct action

of the factor in question is tending to bring a-

bout greater variability than is actually observed.

The direct effect must be offset by opposing cor-
related effects of other factors.

In short, the key to this difficulty would seems', lie in the defini-

tion of the path coefficient as given in equation (1.4) and in rela-

tion (1.17): If a multivariate path coefficient is greater than + or

- 1, then one or the other of the terms in (1.40 must be greater that

+ or - 1. Furthermore, the cc 'relation of the exogenous variable with

the other exogenous variable(s) as in equation (1.17) must be such as

to compensate for the tendency of the exogenous variable to cause more

variation in the dependent variable than is observed in the data of

concern. Ire a specific empirical example, it may be fruitful to ex-

amine each of the specific terms of the second summation in (1.17) to

provide insight as to how the correlation of the independent variable

of interest with the other exogenous variables is compensating for its



large direct path coefficient. This explorationmay lead to insight, for

example, as to how the path model could be altered to achieve the same

multiple correlation with fewer exogenous variables. As for the residual

path coefficient, its interpretation remains the same as for the bivariate

path model.

For the reader who is weary of this abstract discussion of

multivariate path models, we shall give an empirical example. However,

before we leave this topic, let us generalise several important formulas

to an n variable multivariate model. ateneralriate path model

is

Z1 m P1242 + P1e3 ". Pin% + Pit&
(1.19)

where Z
1
is arbitrarily taken as representing the endogenous variable,

Z2, Zn as exogenous variables, and Za as residual. The "general for-

mula for the correlation of an exo enous variable with the endogenous

variable becomes

n
rut.

jE2
Pli P11 rid

1,'i=

=2
P
lj

r
ij

j

(1.2o)

Then the formula for the total indirect effect of any exogenous variable

Zi on the endogenous variable Z1 is

Total Indirect Effect
(TIE) of Zi on Zl

rli
-

Pli

Also the formula for the come lets determination of Z1 becomes

(1.21)
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(1.22)

Finally, the formula for the residual in the general multivariate path

la Vl OW R2

FigureFigure 4 illustrates dieeneralmtriateatIldiaam.

Pla

(1.23)

FIGURE 4.
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1.5. An Emnirical Exam le of the Multivariate Path Model. This

empirical problem involves data kindly provided by Dr. Grover Cunningham

of the Child Development Evaluation-Research Center. He postulated the

dependency of a child's IQ score on 17 measures of correlation of per-

sonality characteristics of his parents. The exact form of his path

model is

Z18 = 218,1;1 + 218,22 + 218,3Z3 218,4Z4 218,5%

P18,6Z6 P18,7;7 + 218,8;8 + 218,9;8

+ 218,10;10 + 218,11;11 218,12;12 + 219,13;15

+ 218,14;14 218,15;15 + 218,18Z16 + 218,17;17

2180aza (1.24)

where Zi, i = 1,...,17 are measures of correlation of personality attri

butes of parents, Zle is the 4-Aid's IQ score, and Za is the residual

factor. 4 path diavam of the postulated model is given in Figure 5.

All of the postulad causal relations are drawn in Figure 5. How-

ever, note that ncL:a of the postulated correlational relationships

are drawn in the figure. The reason for this departure from the norm

is that, as the number of exogenous variables increases in a multivar-

iate path model, the number of correlational relationships between the

exogenous variables increases according to the formula for the binomial

coefficient:

( = n.

crin.t"4-7
[

where n is the total number of exogenous variables, k.is the number

(1.25)
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of variables taken in a combination - this will nearly always be 2 for

multivariate path models, and is the factorial operator. Hence, the

number of correlations between the 17 exogenous variables taken 2 at a

time would be:

(17) - 17J

717

1716411

4.1 272 in 136 correlations

2

In short, the representation of all 136 correlations among the exogenous

'1

variables would make Figure 5 look more like abstract art that a path

diagram. Therefore, we shall leave correlational arrows out of Figure 5

and choose to keep in mind the posited intercorrelations among the exo-

genous variables.

The numerical rather than the symbolic values for the path co-

efficients have been entered in Figure b. From these values, it is

obvious that exogenous variables 10, 12) and 16 make the largest direct

contributions to the variance of Z18. However, the residual variable

Z
a
still accounts for about 42 per cent of the variance of children's

IQ scores. The equation for total determination of Zie with the actual

numerical values for the direct effects, correlational effects, and

residual effects corresponding to equation (1.23) is

r18,18
1.0 1.2654 - .6869 + .4215 (1.26)

This equation shows that the correlational effect is negative, quite
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large, and counteracts the overdecermination of the IQ scores through the

direct effects of the seventeen exogenous variables.

Let us look at the total indirect effects of each of the var-

tables*

TIE of 1 on 18 - r18,1
- P18,1

TIE of 2 on 18 - r18,2 P18,2

.TIE of 3 on 18 - r18,5
P
18,3

TIE of 4 on 18 r18,4
.. P18,4=

TIE of 5 on 18 i.
r18,5 P18,5

..

TIE of 6 on 18 r18,6
- P18,6n

TIE of 7 on 18 - rim . P
7

- .153 - .148 = .005

"I '489 (4.'143) al .054

- -.021 - ( -.255) .214

a .-.011

= .102

mi -.227

1-.105-.1

- .117 - -.12S

°I .117 is -.015

- (-.221) a -.006

- (-.24o) .155

TIE of 8 on 18 = r18,8
P18,8 - -.068 - ( -.249) .181

TIE of 9 on 111 - r18 P18
-.159 - .200

.081

TIE of 10 on 18 - r18,10 P18,10
n ,.068 - .441 - -.575

TIE of 11 on 18 - r1811
P18

it -
-:oee - ( -.196) .10e

TIE of 12 on 18 = r18,12 P18,12 - '474 - ( -.474)
in

.400

TIE of 13 on 18 - r18,13 P18,13 al
.120 - .164 se -.044

TIE of 14 on 18 r18,14 P18,14 m
.219 - .359 a ...120

TIE of 15 on 18 es r18,15- Pi8,15 -
.161 - .207 = -.046

TIE of 16 on 18 -18,16 - P18,16 - -.260 * (...525) - .265= r

-
-18,17 P18,17

.095 - .126 ...0.55TIE of 17 on 18 r

There are toe" OserWitons which should be madealguilag the

estimates of the total indirect effect of each exogenous variable. First,

note that, although the variables with large direct effects tend also to
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have large indirect effects, the rank-order of the variables by sire of

indirect effects is quite unlike the rank-order according to rise of

direct effects. Sew cond, note that, for the threekvariable multivariate

path model discussed in section 1.4, the total indirect effect was the

only indirect effect for each exogenous variable, e.g., variable one had

only ens indirect effect - through its correlation with variable two and

the direct effect of variable two on the endogenous variable. However,

in this problem with seventeen exogenous variables, each exogenous var-

iable has sixteen different indirect effects, i.e., each exogenous var-

iable has an indirect effect through its correlation with each of the

other, exogenous variables. Igaimumaaju there are n exogenous var-

iables in a multivariate path model, then there will be n - 1 indirect

effects for each exogenous variable. This result follows directly from

formula (1.20). As an example, in the present model the indirect ef-

fect of variable 1 on variable 18 through variable 2 is the product

r12 1218,2 - ( ...280) (*.143) - 0.036 while its indirect effect

through variable 3 is the product r13 P18,3 (-.170) (-.235) 0.040.

Of course, the sum of all of the indirect effects of an exogenous variable

through all of the other exogenous variables is equal to the total in-

direct effect of the variable. As an aid to the interpretation of a

specific empirical problem, it may be useful to examine the separate

indirect effects of each variable. It is out of such painstaking em-

pirical examinations that a multivariate behavioral science will be

built!
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Section 2t Recursive Sets of Simultaneous Equations.

Up to this point in the paper, we have developed path models

for elementary multivariate systems. By "elementary" we mean systems

of variables such that the postulated relationship is of an endogenous

variable dependent upon a number of exogenous variables which are taken

to be caused by variables outside of the set under consideration. The

reader who has systematically read the preceding section should be able

to construct and interpret a multivariate path model for any elementary

multivariate syttem he may encounter. However, the elementary multivar-

iate path model is not sufficient for all of the types of multivariate

systems which the behavioral scientists frequently must analyze. Spe-

cifically, we often are willing to postulate that an exogenous varia-

ble effects an endogenous through its direct effect on another variable.

Or in other situations, we are willing to postulate the causal depen-

dewy of what we had considered an exogenous variable. This type of

multivariate system is illustrated by Figure 1 of section 1.1. In short,

we often wish to isolate "stages" of causation. We shall take a brief

excursion from path analysis in this section co develop a tool which

will allow us to represent such multivariate systems with path models.

Obviously, the problem posed in the preceding paragraph is

the simultaneous representation of several relationships among a set of

variables rather than one particular relationship taken by itself. Fur -

thermore, the reader has undoubtedly been exposed to the dictum that in

order to represent several relationships at the same time one must write



and solve a set of simultaneous equations. The question is: which of the

many possible sets of simultaneous equations are consistent with our as-

sumption of asymmetrical causal ordering and allow a simple least-squares

solution? Let us examine the following simultaneous equations in which

we have represented each of Z1, Z2, Zn (in standard-units) as a de-

pendent variable with residuals Zit, Zb, *es, Zict

Zl sm P122 P13Z3 '" Plnn PlaZa

Z2 P21Z1 P23Z3
+ + P2nZn + P2bZb

(2.1)

Zn - Pnel + Pne2 +
Pno Pn0k-1

This type of simultaneous equation structure will not suffice for our

purposes, because it does not meet the two conditions stated above.

First, it does not represent an asymmetrical causal system since it in-

cludes both the path coefficients Pij and Pji, for each i and j. Be.

cond, unless some of.the path coefficients are set equal to zero, there

is no set of values which yields a unique solution for the path coeffi-

cients, and 1%2st-squares procedures cannot be utilized to solve the

system (Blalock, pp. 6544).

We can solve both of the above difficulties by adjusting the

system so as not to permit two-way causation. This implies that, if

we allow for the possibility that Pij # 0, the P'i must be zero. In

equations (2.1), let us set each Pij equal to zero if j > i. This



condition gives the following type of simultaneous structure which is

called a recursive system of simultaneous equations:

Z
1

P
1
aZa

Z 2 - 1221Z1 P2bZb

Z
3

= PuZi + P32Z2 + P3cZc

(2.2)

'11111 P n1Z P1 ni2 ." + + Pak Z
kn k

There are several important properties of recursive equations

as illustrated by (2.2). First, note that Z1 is taken to be caused only

by variables that are outside of the set under consideration. Hence, Z1

corresponds to what we have called an exogenous variable. However, Z2 is

causally dependent on Z1 as well as a residual veritable. Furthermore, Z3

is causally dependent on both Z1 and Z2 and a residual variable. Finally,

Za is dependent on all of the other Zi and a residual variable. A second

oritarsivesstems is thee any of the remaining path

coefficients may be set equal to zero if it does not reflect a postulated

causal dependency. For example, if we set P21 = 0, then we have a re-

presentation of a multivariate system in which there are two exogenous

variables - Z1 and Z2. Finally, perhaps the most important property of

recursive systems of regression equations is that we can make use of or-

dinary least-squares procedures to estimate the postulated path coeffi-

cients (Wold and Jurgen, pp. 51-52).



Let us now try to grasp some intuitive understanding of what

the term "recursive" means when applied to a system of equations and build

a rationale for an assumption about recursive equations which we will find

convenient to make. First, note that, if we enter a recursive set of

.""iiigitions to determine the value of, say, Zj, we will find it is depen-

dent on the values of all Zi for i < j. If we proceed to inquire into

the ditermination of the values of each of these Zi in turn4 we will find

that they are dependent on the variables which preceded them in the sys-

tem until at last we come to the variable(s) the value of which is aim-

ply taken as given or observed and caused by no explicitly considered

variable. Thus, the statement that a system of equations is recursive

means that there is at least one variable the value of which is not in

question and which successively enters into the determination of every

other variable in the system either directly or indirectly through the

determination of an intermediate variable. Now consider what happens

in equation (2.2) if an increase in the value of Za in associated with

an increase in the value of Zb, i.e., if there is a positive correlation

between "all other" variables which cause variation in Z2 and those which

cause variation in Z1. The% as Z1 ( Za) increases, the value of Zb

will also increase, This will cause the estimate for P21 to be spur-

iously high in order to compensate for the confounding effect of Zb.

Similar types of side-effects can be traced through equations (2.2) if

any of the residual terms are correlated. Hence, in order tO assure

that we get unbiased estimates of the path coefficients in path models

involving recursive systems of equations, we shall have to assume that
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the residual terms in each of the equations are uncorrelated. Practi-

cally, this means that in a specific empirical problem, we shall want

to bring as many as possible of the common components of the residuals

explicitly into the path model so that the residuals will have or approx-

imate zero correlation. Furthermore, we shel find that we can test

this assumption in certain models.

Section 3: Path Analysis Revisited.

3.1. The iihlti-sta e Multivariate Path Model. Consider again

the problem posed at the beginning of Section 2. Briefly, the type of

system we would like to handle concerns "stages" or "chains" of causa-

tion. The nation of recursive systems of equations provides a tool for

the development of a general type of model for such multivariate systems

which we shall term the multi -stain, multivariate path model. Because

there are so many possible specific uses of this.model, it is virtually

impossible to discuss it in general. Therefore, we shall utilise an

example from a sociological problem posed to the author by David C. Eaton.

Eaton was concerned with the explanation of the personal income of heads

of households in the United States in the year 1959 by a limited number

of personal characteristics of the heads. From a search of relevant

literature, he was able to find a number of bivariate correlations among

his variables of interskt Furthermore, on the basis of time sequences

and theoretical assumptions, he was willing to postulate a causal order-

ing among the variables. Specifically, he was interested in explaining

the personal income of heads of households from their personal character*.
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istics of (1) race, (2) age, (3) education, (4) occupation, and (5) full-

ness- regularity of employment. Since he was not willing to consider

each of these variables as exogenous with no causal relations to or from

the others, the elementary multivariate path model was obviously not the

appropriate model. For example, because of its priority in time (being

determined at birth), race was taken as an exogenous variable which gen-

erally has had an asymmetrical causal effect on the level of education,

status of occupation, and employment-fullness-regularity of heads of

households through institutionalised patterns of racial discrimination

throughout the society. On the other hand, race was postulated to have

only a symmetric non-causal relationship to age which, in turn4 was taken

as an exogenous variable having an asymmetrical effect, first of all, on

education because of the differing levels of educational experience of

each age cohort (generation). Age was further postulated to have an

asymmetric positive effect on occupational statue of heads of housold

through institutionalised patterns of seniority, tenure, and promotion.

This relationship was also expected because of the exclusion of heads

of households 65 or More years old from the sample - an age at which the

relationship would be expected to become negative for a number of rea-

sons. Finally, age was expected to have direct effects on employment-

fullness-regularity and personal income of heads of households. Educa-

tion of heads of households was taken as tile first of the dependent

variables* However, in addition to its postulated dependency on race

and age* education was itself taken to have direct effects on the occupa-

tion, employment-fullness-regularity and personal income of the heads



from a consideration of institutionalised patterns of hiring and employ-

sent in industrial societies. Again, for institutional reasons, the status

of a heads* occupation was taken to be dependent on his race, age, and

education while, in turns. occupation was postulated to have an asymmetri-

cal effect on the fullness and regularity of employment and income of

heads. Finally, employment-fullness-regularity was posited as dependent

on the other variables and as determining income. A path diagram for

thii complex pattern of relationships is given in Figure 6 with the num-

erical values of the postulated path and correlation coefficients.

Having mapped the 6 variables onto a path diagram representing

the rough notions of causation with which we began, it was quite simple

to write the following recursive system of regression equations as the

path models

Zl 1111 P
1a-
Z-a

Z2 P Zlb b

Z3 P32Z2 + P31Z1 + P tc Zc
(3.1)

Z4 = P43Z3 + P42Z2
"I" P41Z1 "I" P4dZd

Zs = P54Z4 + P53Z3 + P52Z2 P52Z1
P5eZe

PliefZ6 P65Z3 + P64Z4 + P63Z3 + P62Z2 + P 61Z1 +

Furthermore, with the aid of both the path diagram and the path model,

twenty -three specific predictions regarding direct and indirect effects

of the variables were deduced. All but two null hypotheses regarding

these propositions were rejected. The reader is referred to Eaton (pp. 105 -

117) for complete details and evaluation.
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1.00

zb I

where:

Zi =

Z2 =

Z
3

a.

Z4

Z5

Z
6

=

.925

Race of Head

Ago of Head

Education of Head

Occupation of Head

EmploymentFullness-Regularity of Head

Personal Income of Head

FIGURE 6.



The results for multivariate path models regarding computation

of residual path coefficients and indirect effects hold also for this

type of model. However, one must calculate a residual path coefficient

for each equation in the path model by using the multiple correlation

coefficient for that equation. As before, the correlation between any

two variables of the model may be expanded along the lines of formula

(1.20). Let us explore the correlation of Z3 and Z5 as an examples

r53 = (1/N) E Z5Z5/N

(1 /N) E Z3 (P54Z4 + P53Z3 P502 + + P5dZd)

P5e34 + P53 252% P5ir13 (3.2)

The general form of this expaniion theorem for multi-stage, multivar-

iate path models is

rij ikrjk (3.3)

where i and 3 denote two variables in the system and the index k runs

over all variables from which paths lead directly to Zi. If continue

to expand (3.2) by means of (3.3), we have

r53 = P53 + P54r54 + P52r23 + P51 (1/N E Z1Z3)

P53 + Pur34 + P52r23 + P51 1/N E Z1 (p52Z2 +

P31Z1 + P3cZc)

P53
P54r34 P52r23

P51P32r12 P51P31

P53 + P r
34

+ P52 (1/N E Z2Z3) + P51P52r12 + Pen

P53
+ P54r34 + P52 1/N E Z2 (P32Z2 + P31Z1 + P3cZe)

+ P511)329.2 + P
51

P31
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P +Pr +P52P32+PP.P +PPr
54 34 52 31 21 51 32 12

P51P31

P53 + P54 (1 /N E Z324) + P5P32 + P52P31P21

P51P32r12 P51P31

= P53 +. P5 1/N E Z3 (P43Z3 + P4242 + P401 + 1)4dZd)

P52P32 P52P31P21 P51Pur12

P
53

+ P 54 P43 + P 54P42
r
23

+ P P
41

r
13

+

P52P31P21 + P51
P
32

r
12

+ P
51

P31

P53 + P54P43
+

+ P52P
32

Pas + P54P43

P
51
P
31

P52P32

P54P42 (1/14 Z2Z3) P54P41 (
1/N E Z1Z3)

P52P31P21 P51P32r12 P51P31

+ P54 1/11 E Z2 (P32Z2 + %1Z1 + P Z3c c

P541
41

1/N E Z
1

(P
32

Z
2

+ P31Z1 + P3cZe) +
P52P32

+ P
52

P
31

P
21

+ P
51
P
32

r
12

+ P
51

P
31

P53 + P54P43 P54r42P32 P54P42P31r12 P541P41P32r12

P54P41P31 P52P32 P52P31P21 P51P32r12 P51P31

(3.4)

of expansion can be carried out for all of the correlations be-

two variables in the model. It may yield valuable information
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regarding indirect effects. If we subtract P53 from both sides of (3.4),

then we will have the familiar formula for the computation of the total

indirect effect of variable 3 on variable 5. Furthermore, in some em-

pirical problems we may want to examinehascALChwaRaltiladirIct

,effects as on the right-hand side of (3.4). An unusual finding regard-

ing the relationship of status of occupation (Z4) to personal income of

of head (Zs) in the present example was that its direct effect was ex-

tremely small (0.020) when employment-fullness-regularity was controlled.

However, the indirect effect of occupation on income through its direct

effect on employment-fullness-regularity (Zs) and the direct effect of

(Zs) on income, 1004, the product (Ps) (Pss), was +0.238. We must

emphasise to the point of becoming polemical that it is through such

detailed findings as this that we will move behavioral research and

theory beyond the quagmire of simplistic bivariate propositions to the

realm of multivariate knowledge:

At this point, we wish to reiterate that the model of Figure 6

is only one example of a possible infinity of specific multi-stage, mul-

tivartsta path models. However, it suffices to illustrate the general

principles to follow when dealing with a complex pattern of dependent

relationships.. From his experience with such problems, the author sug-

gests the followi steps as a eneral rocedure. First, since the re-

searcher often approaches multi-stage, multivariate problems with only

crude ideas of the proper causal structure to postulate, he should begin

to formalize his nations by mapping them onto a path diagram which he

may use as a heuristic device until he is satisfied that it represents
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the causal sequences as suggested by the current state of theoretical

and empirical knowledge about the variables of interest. In general,

the multi-stage, multivariate path model may include any number of ex-

ogenous variables and any number of causal stages with any number of

dependent variables at each stage. Furthermore, as emphasised in the

discussion of recursive systems, path coefficients from all preceding

variables in the model need not be postulated for subsequent variables

- note that in Figure 6 all path coefficients were postulated - if

there is some theoretical or empirical reason for postulating that they

will be sero or near-sero. Of course, if one or more path coefficients

is predicted to be sero, then the researcher should run the model both

with and without those path coefficients to ascertain whether or not

they actually disappear in the empirical data. Second, if the research-

er is satisfied with the structure represented by his path diagram,

then he should write the path model or set of recursive equations which

is implied by the diagram. This set of equations constitutes the ac-

tual regressions from which he gets estimates of the postulated path

and correlation coefficients. Third, he should compute the residual

path. coefficients by applying formula (1.23) to each of the equations

in the path model. Fourth, the researcher should compute estimates of

total indirect effects of prior variables on subsequent variables from

formula (1.21). Fifth, if he is interested in probing in detail the

manner in which a. prior variable effects a subsequent variable, then

he is encouraged to expand the correlation between the two variables

along the lines of formula (3.3) and as illustrated by equation (3.4).
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This five-fold procedure should facilitate the representation and inter-

pretation of the most complex sequences of causal dependency.

3.2. The Multi - stages Bivariate Path Model. If we postulate a

aeries of causal stages but restrict the number of variables at each stage

to two measured variables and a residual, then we have a special case of

the multi-stage, multivariate path model which we may refer to as the

Multi -at, m& path model or s{-miler chain. It is instruc-

tive to examine this particular model because of the opportunity it pro-

vides to test the basic assumption of recursive systems of regression

equations, vim., that the residual terms of the equations are uncorrelated.

For purposes of illustrating this model, we shall use the com-

putations and data reported by Duncan (pp. 10-12). Ha postulated a mul-

ti-stage, bigariate path model to account for recently reported corre-

lations between the occupational prestige ratings of four studies com-

pleted at widely separated dates: Counts (1925),.Smith (1940), National

Opinion Research Center (1947), and NORC replication (1963). The path

model postulated by Duncan is given by the recursive systems

Zl m PlaZa

Z2 'm P21Z1 P2bZb

Z3 sm P32Z2 P3cZc

Z4 = Pie
3

P Z
4d d

(3.5)

where ZI = Counts prestige ratings, 1925, Z2 = Smith prestige ratings,

1940, Z3 = NORC prestige ratings, 1947, Z4 = NORC prestige ratings, 1963,

and Za, Zb, Zc, Zd are residual variables. A path diagram of the postu-
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lated model with numerical values for the path coefficients is given

in Figure 7(a).

Table 3 gives the estimators of the path coefficients for the

simple causal chain of Figure 7(a). As was shown in section 1.3 and

illustrated in formulas (1), (2): and (3) of Table 3, the estimators

for path coefficients in the bivariate case are correlation coefficients.

Furthermore, equations (4), (5), and (6) of Table 3 show that the com-

putation of the residual path coefficient is an immediate result of the

formula for complete determination of the dependent variable. However,

up until now we have not questioned the assumption of recursive sys-

tems that the residuals are uncorrelated. Formulas (7), (8), and (9)

illustrate a condition which must be met by simple causal chains if

that assumption is tenable. That is, if the assumption of uncorrelated

residuals holds, then the observed correlation coefficient of the al-

ternate or terminal variables of Figure 7(a) must equal the product of

the observed path coefficients connecting them.

for Figure ?(a)i

Duncan (p. 11) gives

the following calculations

Variables Calculated Observed Difference

Correlation Correlation

r3i 951 .955 .004

r42
.972 .971 -.001

r41
.942 .934 -.008

Although the discrepancies between inferred and observed corre-

lations are small and trivial enough so that we may accept the hypothesis

of a multi - stags, bivariatepath model with uncorrelated residuals, Duncan,
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LE ES TORS OF P COEFFICIENTS FOR 'DIE PATH) OF FIGURE 7 al.j...ORNT

(1)

(2)

(3)

(4)

(5)

(6)

(7)

.(6)

(6)

r21

r32

r43

r22

r
33

r44

r31

r
42

r41

si

a

-

a

.r.

-21

P32

P43

1 - P
21

1 P32

1 P
2
43

P
21

P
32

43
P32 P43

P
21

P
32

P43

+

+

Pb

Pgc

P
2

4d

to illustrate what should be done in case the discrepancies had been large,

constructed the alternative model shown in Figure 7(b). In this model,

Duncan has dropped the assumption of uncorrelated residuals and computed

the correlations among them which must be postulated to explain the small

discrepancies between the inferred and observed path coefficients dis-

cussed above. However, the assumption that a residual is uncorrelated

with the immediately preceding variable in the chain holds for 7(b). The

formulas provided by Dincan (p. 12) which yield the desired coefficients

when solved in order are given in Table 4.

In general, as Duncan points out, if we are considering a

k-variable causal chain, we must estimate k-1 residual paths (3 for

Figure 7(0), (k-1) (k,2)/2 correlations between residuals (3 for Figure

7(b)), k-1 paths for links in the chain (3 for Figure 7(b)), and k-2



TABLE 4t ESTIMATORS OF PATH COEFFICIENTS FOR THE PATH MODEL OF
FIGURE 7 b

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(1l)

r32

r43

r22

.968

.982

.990

1 a

1 as

1 a

.955

.934

.971

0 ag

0

a
r2d

r33

r44

r
31

r
41

r42

rc2

d3

(where

at

as

41

P32

p2 4.

43

p2
3c

Pid

P
21 P 32

+ P
3c
r
cl

24313321121
+ P P r

43 3c cl

P43P
32 + P21P4drld

P2brbd P 21 rcl

P
3c

r
cd

+ P32 r2d

1,
"21r1d P2brbd)

P4drld

P2bP4drbd

correlations between the initial variable and residuals albs...A in the

chain (2 for Figure 7(b)). This yields a total of (k2 + 3k - 6)/2

quantities to be estimated. For, the purpose of estimation, we may con-

struct k(k-1)/2 equations expressing known correlations in terms of paths

(as in equations (1), (2), (3), (7), (8), and (9) of Table 4), k-1 equa-

tions of complete determination (as in equations (4), (5), and (6) of

Table 4) and k-2 equations in which the correlation of a residual with

the immediately preceding variable in the chain is set equal to sero

(equations (10) and (ii) of Table 4). This gives (k2 + 3k - 6)/2

equations, the precise number needed for a unique solution.



The procedure for testing the assumption of uncorrelated resi-

duals, as illustrated by Duncan's example, may be useful in exploring

relationships among variables which have been traditionally assumed to

form simple causal chains. If, after the uncorrelated residual assump-

tion is abandoned, the empirical data are still not sufficiently accounted

for, then the assumption of a simple causal chain should be relaxed. Dump

can's comments (p. 12) regarding his example are particularly appropri-

ate here:

The solution may, of course include meaningless
results (e.g., r > 1.0), or results that strain
one's credulity. In this event, the chain hypo-
thesis had best be abandoned or the estimated paths

modified.
In the present illustration, the results are

plausible enough. Both the Counts and the Smith
studies differed from the two NOM studies and from
each other in their techniques of rating and sam-
pling. A further complication is that the studies
used different lists of occupations, and the ob-
served correlations are based on differing num-

bers of occupations. There is ample opportunity,
therefore, for correlations of errors to turn up
in a variety of patterns, even though the chain
hypothesis may be basically sound. We should
observe, too, that the residual factors here in-
clude not only extrinsic disturbances but also
real though temporary fluctuations in prestige,
if there be such.

What should one say, substantively, on the
basis of such an analysis of the prestige rat-
ings? Certainly, the temporal ordering of the

variables is unambiguous. But whether one wants

to assert that an aspect of social structure
(prestige hierarchy) at one date ''causes' its
counterpart at a later date is perhaps question-

able. The data suggest there is a high order of
persistence over time, coupled with a detectable,
if rather glacial, drift in the structure. The

calculation of numerical values for the model
hardly resolves the question of ultimate 'reasons'
for either the pattern of persistence or the temp

po of change. These are, instead, questions raised

by the model in a clear way for further discussion
and, perhaps, investigation.
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4.3. The Path Decomposition Model. Deciuse many of the depen-

dent variables of interest in the behavioral sciences are composite var-

iables, we now discuss a use of path analysis which may be referred to as

the oath decomposition model. Thus, various tests or scales commonly used

in behavioral research are composed of subscales or subtests. In the

case of such composite dependent variables, it is oftin of interest (1)

to compute the relative contributions of the component variables to varia-

tion in the composite variable, and (2) to ascertain how independent var-

iables effect the composite variable via its components.

We shall again utilise an illustrative example provided by

Duncan (pp. 7 -10). However, since the subject matter of his example is

rather specific (population density), we shall discuss his model sym-

bolically; the form of his composite variable has wide generality. The

raw-score definition of the composite variable Vo is

vo = vl v2 v3

Let 10 = log Vo) X1 = log V1, X2 = log V2, and X3 = log V3. Then the

composite variable is an additive combination of X1, X2, and X3:

X0 is Xl + X2 + X3

If each variable is expressed in standard-score form, we may write

ZO PO1Z1 12022 1203Z3
(5.6)

as the path decomposition model where Z0, Z3 are the variables in

standard-score form and P01, P02, P03 are the path coefficients involved
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in the determination of ZO by Z1,
Z2, and InIn. the case of complete

determination by measured variables, the definition of the path coeffi-

cient, as given by formula (1.4), reduces to a ratio of standard devia-

tions since the partial regression coefficient part of the definition

(cip is unity. Bence, the following numerical values of the path co-

efficients, as Duncan indicates (p.8), may be computed without prior

calculation of correlations:

P01
- S1/S0

.132 SO
.491 S1 .065

'P02 82/80
- .468 S2

.230

03
S
s
/S
o

= .821 S
3

.403

The path diagram provided by Duncan (p. 9) for the present

path medal is given in Figure 8(a). Table 5 gives Duncan's correlation

matrix for the present problem. The composition of the correlation

of the composite variable with its component parts may now be written

from formula (3.3).

r01
= P

01
+ P

6 2r12
+ Po3r

13
- -.419

r02 -
p

4.-01r12
P02 + P03r23

- .636

403
- P

01
r
13

+ P
6
2;23 + P03 - .923

As Duncan points out (p. 8), this preliminary analysis gives

a clear ordering of the three components in terms of relative importance,

as indicated by the path coefficients, and shows that one of the com-

ponents is actually negatively correlated with the composite variable,

because of its negative correlations with the other two components.
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TABLE Si CORRELATION MATRIX FOR LOGARITHMS OF VARIABLES IN DUNCAN'S
P TS DECOMPOSITION EXAMPLE

Zo -.419 .636 .923 -.663 -.390

Zl

Z2

Z3

Z4

-.625 -.315 .296 .099

.305 -.594 -.466

-.517 -.226

.549

Duncan postulates a second path model to account for the rela-

tionship of the composite variable to two independent variables via its

compftants. A path diagram for this model is given in Figure 8(b). The

path model is:

Z4 s P4ed

Z5 P5eZe

Z3 P304 + P3e5 + P3cZc (3.7)

glo

Z2 P204 P25Z5 P2gb

Zi P14Z4 + P15 Z5 PlaZa

ZO a P01Z1 P0242
+ P

03
Z3

It should be noted that zero correlation is not assumed in this

model for the residuals Za, Zb, and Z. The path coefficients 4. P34, Pss,

Pap Piao Pip and P15 - are standardized partial regression coefficients

as for other multivariate path models. Furthermore, the residual path

coefficients are given by formula (1.23). Duncan's discussion of the
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(b)

FIGURE 8.
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computation of the residuals (pp. 9-10) is appropriate (using the symr

bole of this paper)t

The two independent variables by no means ac-

count for all the variation in any of the compon-

ents, as may be seen from the size of the resid-

uals, Pla, P2b, and P30... It is possible, ne-

vertheless, for the independent variable& to account

for the intorcorrelations of the components) and,

ideally) one would like to discover independent

variables which would do just that. The relevant

calculations concern the correlations between re-

siduals. These are obtained from the basic theor-

em, equation E3.31, by writing, for example,

r23 a P24r34 P25r35 P2bP3crbc'

which may be solved for rbc = .014. In this setup,

the correlations between residuals are merely the

conventional second -order partial correlations,'

thus rab = r12.450 rac =
r13,441, and rbc = r23.45°

Partial correlations, which otherwise nave little

utility in path analysis, turn out to be appro-

priate when the question at issue is whether a set

Z2 and... Z3 is satisfactorily explained by the

respective relationships of these two components

of independent variables 'explains° the correla-

tion between two dependent variables. In the pre-

sent example, while r23 - .305, we find rbc =

r25.45 = .014. Thus the correlation between

111

pact answer to the question of how the effects of the independent vari-

ables are transmitted to the dependent variable via its components (p.10)t

and

r04 PO1r14 PO2r24 P03r34

r05

Finally, Duncan gives the following equations as the most coma

correlations involving ... Z1, but fortunately
to Z4 and ... Zs. The same is not true of the

this is by far the least important component....

is

P01r15 P02r25 PO3r35

.039 - .278 - .424 = -.663

.013 - .218 - .185 -.391

(3.6)

(3.9)

-49-
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From these results, we note that the composite variable is negatively

related to both independent variables, but the effects via the first

component, although small, are positive. Furthermore, the relative

importance of the effects of Z4 and Z5 via the second and third com-

ponents is reversed in the two equations. Finally, a more detailed

examination of the pransmission of effects can be obtained by expan-

sion of (3.8) and (3.9) by formula (3.3).

3.4. Th 3asic Assumeions of Path Anal sis and Model Test-

At this point, it is appropriate to discuss the basic assump-

tions of path analysis, answer possible objections to the method, and

mention extensions of the procedure which we have not developed in

this paper.

Tifioi....isoflL,iusaritanciAl. The assumption

of linear, additive relationships among the variables of interest is

made in most applications of correlation and regxession analysis. Past

empirical research in a particular problem area is a good basis for

judging the tenability of the linearity and additivity assumptions.

Otherwise, there are simple. procedures such as point-plotting to explore

the degree to which the assumptions hold in a specific set of data. Fur-

thermore, although a relationship may not be linear throughout its en-

tire range of values, it tiny be linear within the range of values under

consideration. Finally, there are a number of convenient transformations,

such as the logarithmic transformation of section 3.3, which may be used

to transform data in order to meet the linearity and additivity assump-

tions. The important point to em2hasixe is that these are assumptions

which are specific to the particular area of investigation and must be
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not ordinarily willing to assume that a change in-a variable caused a

prior change in another variable. A second source of information for the

causal ordering of the variables may be existing experimental or case-

study results. Finally, the theoretical assumptions of the particular

Aubstantive area provide a third source forthe asymmetry assumption.

",c...11owing Wright (quotation in section 1), we view a causal assumption

al Less of an assertion about empirical reality than as a strategy for

int,.tiry. Path analysis, by itself, cannot prove the vaidity of a set

of cwsal assumptions. It can only give the consequences an assumed

eausC sequence for a set of data. It is, of course, the responsibility

of the: :7esearcher to defend his causal assumptions in a given empirical

study.

A particular type of behavioral science relationship for which

the asymmetric path model may not be appropriate is the so-called "inn

terdependint" relationship. That is, we often er. -r variables such

that a chcnge in one cause a change in another which, in turn, leads

to a changes in he former, etc. The relationship of level of education

and racial discrimination provides a common sociological example. At an

original time of observation, some element in the social system may cause

an increase in the level of Negro education. This increase in level of

education may cause a decrease in racial discrimination. Furthermore, the

decrease in racial discrimination may feedback through a number of mechan-

isms to cause another increase in the opportunity for, and level of,Negro

education. Thus, the cycle may continue until an equilibrium position

of the variables is established. How can we handle this type of relation-
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ship with asymmetric path models? The answer would seem to depend on the

rapidity of the feedback relationship. In the case of a relatively Plow

feedback process, cur asymmetric path models will give us a crude, but

perhaps meaningful, cross-section snapshot of the system which only

approximates the "real" causal structure. Furthermore, the path model

will have to be continuously updated ever time as the regression rela-

tionships change. For those systems of relationships in which the feed-

back is relatively rapid, however, our asymmetric path models must be

modified. Wright (1960b) has indicated how this may be done is certain

specific types of problems. Economists also, with the problem of the

rapid adjustment of market forces, have dealt at considerable length with

this type of model. 7.he present author intends 'o add a spatial section

on feedback models to this paper in the near future.

....2...1restITILitsatio. Because of our emphasis on the repre-

sentational and interpretive uses of path models, we have not addressed

ourselves to the problems of tests of significance for path coefficients

and testing procedures for alternative models in,this paper. These topics

also demand treatment in a special section. As a rule of thumb, however,

we propose, particularly for small samples, that a criterion of at least

0.10 be sat for the retention of a path coefficient in a model. This

means that the variable must account for at least 10 per cent of the stan-

dard deviaticE4 and 1 per cent of the variance, of the endogenous vari-

able. A criterion of this level should not lead to the premature rejec-

tion of too many important variables.
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ADDITIONAL READING

The topics discussed in this paper are referenced in a wide

variety of publications in biometrics, econometrics, and statistics.

If the reader desires to read their treatment in other sources, he may

begin with the publications listed in the bibliography. Any of the

articles by Wright are worthwhile discussions of path analysis. How-

ever, his June 1960 Biometrics article is a particularly good summary

treatment. The articles by Duncan, Xempthorne, Tukey, and Turner and

Stevens also provide good treatments of path analysis from somewhat

different perspectives.

Recursive systems of equations are discussed on an elemen-

tary level in the book by Blalock. However, a somewhat more technical

treatment is given in a Simon and Wold and Jureen references.
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APPENDIX I

THE MATHEMATICS OF BNARIATE CORRELATION AND REGRESSION

.
In what follows, we have not sought to develop a distinct pop-

ulation theory and a distinct sample theory of correlation and regres-

sion. We deal primarily with sample theory and utilise population theory

in a heuristic fashion. Consider the case in which we have observations

on two continuous, intervally-measured variables X and Y in raw -score

Then we may define the correlation coefficient as follows:

Definition A01.1. Suppose that X and Y are continuous, inter-

vally-measured variables. Then the statement that r is the corrolgtion

coefficient of the observed values of the X and Y variables pease that

r is a number and tftat r is a measure of the degree of linear covariation

of the observed values of X and Y such that

r= E (X-I) (Y-Ni) = E x y

N Sx Sy N Ss Sy

(Al. 1)

where X and Y are the observed values of the variables in raw-score form,

Mx and My are the means of the raw scores for the X and Y variables, Sz

and Sy are the standard deviations of the observed values of X and 14 and

x and y are the observed values of the X and Y variables in deviation,.

score form, i.e., x = X -41= and y =

Now we would like to develop a means for predicting Y values

for given X values and for interpreting the correlation coefficient. We

begin by Assumini that the X and Y variables are linearly related, i.e.,

we assume that the functional form of the relationship of Y and X in the
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population of X and Y values is a line of the form Y = A" + WI, where

A" is the Y intercept (value of Y where the line crosses the Y axis) and

B" is the slope of the line ( the inclination of the line to the X axis).

At this point, then, our problem is merely to develop estima-

tora of the A" and B" coefficients from the observed X and Y values.

Of the several methods of estimation, we shall follow traditional prac-

tice here and adapt as a basis for an estimated best-fit lime the cri-

terion that the sum of the squares of the deviations from the line shall

be as small as possible. In symbols, let Y' = A+ BX, where Y' (read

T-prime) is the value estimated,for a given; of the Y variable, A is

the estimated value for A", B is the estimated value for B", and let

Y be the observed Value of the Y variable. Then (Y-Y92 repiesents the

squared deviation of any Y from the estimated value. Our problem is to

choose the estimators A and P so as to Like E(Y-.Y')2 as small as poss-

ible. We shall find it more convenient to deal with both the equation,

yl = a + bx, and the sump E(yY92 p in deviation- units, with y' and y

as deviations from My and x = X-MX. This is merely a translation of

the reference axes to make the origin coincide with MX and M. Therefore,

the value of a in the equation becomes sero and we shall drop it from

further consideration.

This allows na to write y' = bx as the equation for estimat-

ing y, in deviation - units, from x, or deviation-values of x. Our prob-

lem now is that of determining the value of b which will maka(r11)2

a minimum. It shall be simple, once the optimal value for b has been

determined, to pass beck to the original reference frame, the gross-
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score azes) by substituting for y' the values Y'-14,$ and for z$ %1.11x.

The following derivation of the ovimal value for b more or

less follows that given by McNemar (pp. 12263). We begin by setting

up the function

f
,

E (3r 4110
2

N N

in which we have N deviations of the form y-y' or y-bz. The sus of

these squared deviations divided by N gives us the function which we

want.to minimise by the proper choice of b. We shall choose the pro-

per value of b by utilising a theorem from the calculus. According to

this .titieorem$ we may minimisethe above function by taking its deriva-

tive with respect to b$ setting this derivative equal to zero, and then

solving for b. Thus

E 3071).P)
N

which, set equal to zero, divided by -2, yields

N

0

b
N

2
0

Ion
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The first term involves the correlation coefficient as defined by for-

mula (A1.1), from which definitional formula we see that £zy/N = yyj

and since Ex2/N = Sz2, we have

rSxSj, - bS
2

= 0

or

rS - bSz 0

which gives

b a
Sx

as the proper value for b. We therefore have

Y1 is r

Sx

(A1.2)

as the equation for the best-fit line in deviation -score form. By proper

substitution' we have

Or

I-1Sr r (X-Mx)

Sx

TI
r. X + (my r Sy Mx)

Sx

(A1.5)

as the equation in terms of the original or raw-scores. It is this form

which we would use in predicting Y from X. Note that B = b = r(Sy/Sz) is

the slope of the line and that the constant A is the term in parentheses.

Furthermore, note that we can get another form of equation (A1.2) by dividing

both sides of the expression by Si y
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r

Sy sx

The observant rcac..er will recognise the y'/5y and x/Sx terms as the X

and (predicted) Y variables in standard -score fors', or

ZI = r Zx
(A1.4)

(41.5)
Z I = Zx

or

where Be' = r. B is usually referred to as standardised regression

e.tMisL_......torl,.......jamtallofeit.
It is usually symbolised by the Greek letter

Beta, but, since we do not have a Greek letter for Beta on our keyboard,

we shall denote it by B. Thus, we have three formulas for the line of

best fit - (Al. 2), (A1.3), and (k1.5) - corresponding to
deviation-, obi.

served-, and standard - score units, respectively.

We note two additional relations. Firpt, we derive a formula

for Byx = byx - the slope of the least-squares equation estimating the

regression of Y on X - in terms of deivation scores. From (A1.3), we

have

Byx r S

ax

E , SY
Sx Sy sx

2
Sx

(A1.6)



Second, just as we can estimate Y values from X values we can extend

our equations to the estimation of X values from Y values, although we

may never desire to do this in practice. Then we may write the equaft

tion for estimating X from Y as follows

= Axy + B Yxy

where Axy = Mx r Sx My and Bxy E xy/U = r Sx . Then we

may write the product

Ityx Bxy

Sy

r
2

Sy

-AS-

(Al.?)

At this point, it is profitable to review three properties or

interpretations of the correlation coefficient.

Adatjattdchjam. It is obvious from equation (A1.4) that

the correlation coefficient may be interpreted as a rate of chew the

amount of change In variable Y per unit of change in variable X - in

standard-score form, It may also bn shown that the correlation coeffi-

cient has bounds of +1 and -1. Hence, the largest possible change in Y,

given a staudard deviation or change in X) is plus or minus one standard

deviation. It should also be noted from equations (A1.2) and (A1.3) that,

if the standard deviations of the X and Y variables are equal, then the

correlation coefficient may be interpreted as a rate of change for the

variables in deviation- or observed-score units.

A.I....2z...Asst......_z___.tracofPreci_is_c.Lon. The next property or inter-

pretation of the correlation coefficient concerns the accuracy of pre.
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diction b means of the regression equation. That is, we would like to be

able to set up confidence bands or intervals about the regression line

or predicted y-values in which we can have confidence that most of the ac-

tual observations fall with a specified degree of probability. In order

to accomplish this goal, we mad a measure of dispersion for the regres-

sion line comparable to say, the standard error of estimate of the mean

of a distribution. By introducing an assumption we may derive such a

measure. We must assume that the standard deviations of the distribution

of Yvalues for each value of X are equal in the population from './hiCh

the sample is drawn. This assumption of homoscedasticity implies that,

if we had a much larger sample sise, the standard deviations of Y-values

for each X value would be very nearly equal.

Note that yt-yt (or Y-Y1) represents the discrepancy between

estimated and observed values and that gy-yr)2/N is the mean of the

squared deviations, the root of which will be the standard deviation of

the discrepancies between estimated and observed values. This particu-

lar standard deviation shall be called the standard error of estimate

the and shall be denoted by Sy.x. We may derive

an algebraic form for this expression as follows. By definition,

but

2
Sy. x

N

Yt = r SY x

ax

from (A1.2), so



then

S
2
y.x

us 1 E (y - r six 302

1 E (y2 2r
icy

r2 s; z2)

Sz S2

us 2r.sx + r2 (Ez2)
2

N Sx Sx
N

Sy Sx Sy r2 Sfr Si

Sz Sz

Sy - r2 Sy

S = S 1 TT2 (A1.8)

Nonce, we have a second procedure for interpreting the correla-

t,..a coefficient: iu terms of the accuracy of prediction or closeness

of fit of the regression line to the data. If no correlation exists, vs

see that the error of estimate is Sy. We should also note the term in

(A1.8) which involves r it I1 7.1. "The expression vr1 77t2 is called

t coeffizient of alienation. Observe that if r = Or its value is 1 and

the error of estimate is Sr

A01.3. Variance and Correlation. It may be shown (see McNemar,

p. 129) that the variance of a sum (or difference) of two independent

variables is equal to the sum of their separate variances. Furthermore,

it may b4 she "i.ee McNemar, p. 130) that the predicted yt and the re-

sidual (y-y') are independent. Therefore, we have y = y' + (y-y') and,

since the two parts are independent,

al
2

4.
2

Sy Sy!
y. x

(Ai. 9 )
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^

.:where S4y
is the variance of the residuals, (y"y'). Dividing both sides

of this equation by Si, we get

1
4I

2

Sy
-Y

S2

(A1.10)

from which we sea that, since the two ratios add to unity either one can

be interpreted as a proportion. In short, the ratio of to to S2 is the

proportion of the variance in Y which can be predicted from 74 and the

ratio of Sts= to Sy
2 represents the proportion of the variance of Y which

is left over or remains or cannot be predicted from X. This is the same

variance which results if ve square formula (A1.8):

2
S

or

Sy (1
r2)

S
2

si 1 - r2
yfix

S2
y

Hence, we may substitute this value in (A1.10)

2
1 in + 1 - r2

Sy

from which we have the ratio

Sgt
r2

72-

In short, the square of the correlation coefficient gives the proportion of

the total variance of Y which is attributable to variance in X. Also, the

proportion of variance in Y which is due to variables other than X is 1 - r2.

This is a third possible interpretation of r.



APPENDD. II

THE MATHEMATICS OF MULTIVARIATE CORRELATION AND REGRESSION

We shall now extend our discussion to the multivariate case in

which we attempt to predict one variable by using several other varia-

bles and to analyze its variance into component parts. We shall find

some similarities to the bivariate case, but we shall also encounter

some significant differences. Again, parts of our derivations more or

less follow those of McNemar (pp. 169-178).

A.21. The Three-Variable Case. Consider first the problem

of predicting X1 (criterion) from a knowledge of X2 and X3 (predixtors).

Geometrically, we can Imagine this as involving three reference axes

instead of two as in the bivariate case. Here we can think of the vert-

ical axis as representing X1 and the two horizontal axes as represent-

ing X2 and X3. We begin by assuming that the relationship of X1 to X2

and X3 is linear, i.e., we assume that the functional form of the re-

lationship of the variables in the population of X1, X2, and X3 values

is of the form Xi = A" + B2 X2 + Bg X3 in which AP is the (pop-

ulation) value of X1 where the plane representing the predicted values

of Xi cuts the X1 axis (where X2 and M3 are zero), and ri and ri are

the inclinations (population values) of the plane of predicted X1 values

to the X2 and X3 axes, respectively (the expected changes in X1, given

a unit of change in X2 and X3, respectively).

As in the bivariate case, our problem is to estimate A", Bg,

and Bg. Again, this is a least-squares affair - the sum of the squares

of the errors of estimate shall be a minimum. In short, we desire values
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for A, MI, and B2 in the equation

X'
1

= A + B2X2 + Bits

or, equivalently, the values b2 and b3 in the deviation -unit equation

X t b2:2 + b?3
1

such that the sum

E (Xi-X1)2 = E (xi-xj)2

is a minimum.

The task of derivation is somewhat simplified if w* transform

all tree seta of values into 'standard-score form, i.e., Uwe set

Z i - (Xc MdiSi. Then our equation becomes

Z1 = Bil Z2 + BE Za 3

where Bit represents the artial re ession coefficient in standard-score

(a. 1)

form. AA for the bivariate case, these regression weights are usually

called beta coefficients or standardised regression coefficients and de-

noted by the Greek letter, Beta. Since we are changing the size of our

unit of measure, it should be noted that, say 74 will not necessarily

equal B2 b2. Now we need to determine the value of El and BI such that

the average of the squared errors, or

1 E (Zi - Z1)2

shall be a minimum. Since Z1 - Zi = Z/ - B; Z2 - B; Z5, the function

to be minimised is
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f mg 1 E (Zi - B11 Z2 - BI Z3)2

-14

As in the bivariate case, the calculus is used to determine

the values of B*
2
and B*

3
which will make this function a minimum. Taking

tve partial derivative of the function first with respect to Bg and then

with respect to Bg

dpf = -2E Z2 (Zi - 11 Z2 - BI Z3)

dPq

dpf - -2 E Z3 (Zi Bt Z2 - B3 Z3)

PB*3

These two derivatives must be set equal to zero and then solved simul-

taneously for the unknowns, Bg Ead IT By performing the indicated mul-

tiplications, sliming, and dividing each equation by 2, we get

- E Z1Z2 + B E Z2
2

+ BB E Z2Z3 = 0

N

2
E Z1Z3 + E Z2Z3 + z3 0

Noting that the sum of squares of standard-scores is unity, whereas any

sum of cross products of standard-scores divided by N is the correlation

between the two variables involved in the cross products, we have by

application to the above equations

or

+ ,,21k*
r 0

3 23

-r15 75,1 r23 11
0
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r23B1 +

0
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Since the ra in the above equations are determinable for any specific

set of data, we may treat them as know= leaving only the B*a as unknowns.

Solution of these two simultaneous equations in two unknowns gives

Bt

B1

r12 r13r23

1 -

r13 - r13r23

1 - 4.3

(A2.2)

As soon as the values of B*
2

and Bit
3
have been determined, they

can be substituted in the Rrediction equation

z mg Z + B* Z
1 2 2 3 3

so that for a given pair of Z2 and Z3 values we can predict the standard-

score on the criterion variable. However, it is often more convenient to

deal with deviation- or rawscores. Hence, by replacing the Zs in the pre-

ceding equations by their values in terms of raw-scores, means, and steagy

dard deviations, we will have

or

Xi - Ml 82 X2 142 + B13 X3 M3

S1
S2 S3

Xi - 141 82 X2 - B2 142 +
B

X3 - B4; M3

W.M
MOM WORM

S1 S1
S
2

S
2

S
3

S3

After multiplying by Si and rearranging terms, we have



Xi = P i t Si X2 + BI Si X5 + (Hi - B; Si M2 - B3 Si M3)
(A2,3)

S2 S3 S2 3

as the regression equation in raw-score form. From this equation) we see

that our original B2 must equal BA (S1 /S2), B3 = Bg (S1 /S5), and A = the

parentheses term. We may also derive values for the partial regression

weights in terms of bivariate regression weights from these equations as

follows

'32 sl B1

S2

' s1 r12 7r13r23

S2

and, since gm B2052 by formula (A1.7)

* sl r12 T13r23

S2 1 - -B23B32

= Si E xix2/N S1 CC xix3/N . E x00)

S1S2 S2 C7Fig3 s2s3 )

1 - B23 B32

= E xix2JN - E xix3/N . E x2x3/N

02?
3

.2Q2
'

S
2

1 - B23B32

on since B12 = E xix2iN by formula (Al. this reduces to

S2

B2 B12 (B15) (B32)

1 B23 B32

(A2. 4 )



Thus, we have an equation for the raw.- or deviation-score partial regres-

sion coefficients in terms of bivariete raw- or deviation -score regres-

sion coefficients. The notation for this coefficient is often written

B12.3
to indicate that it is the regression of variable 1 on variable 2,

controlling for variable 3 (the expected change in variable 1, given a

unit of change in variable 2, controlling for variable 3). Generalising

this notation, we may write

bik i Birk
Bij

(Bik) (Bkj)

1 . (Bjk) (BkJ)

(A2.5)

as the equation for the partial regression coefficient in raw or devia-

tion -score form of variable i on variable j, controlling for variable k.

We can ascertain the accuracy of the prediction of X1 from the

beat combination of X2 and X3 by examining the error of prediction, i.e.,

X' XI or S1(Z1 zi). The sum of the squares pf the errors divided by

N will yield the variance of the errors. The square root of this variance

would correspond to the standard error of estimate. Let Ss be the

standard error (in Z-units) for predicting X1 from X2 and X3, i.e., let

3s1.23
be the standard deviation of the residual terms (in s-units). Then

2
S
2
1.23

E (z1 z1)
s

_

N

E (z1 z2 - B Z3)2
INI - -
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2 2 2 2 2
E ZI + sg z Z2 + E! E Z3 271 E Z1Z2

N N N N

2B E Z1Z3 + nE Z2Z3

*if?

1 + 44 B32 r12
r13 + 211 r

23-3

(A2.6)

which by algebraic manupulation reduces to

2

Ss1.23 l!
1 _ (41.12 + Big ri3) (A2.7)

in terms of standard scores. Of courses Si times this would give the error

variance for ram-scores.

We proceed to define the multiple correlation coefficient as the

correlation between Z1 and the best estimate of Z1 from a knowledge of

Z2 and Z3. In symbols,

R1.23 %1st E Z1 Z1

N S
xl

ZI (B; Z2 + 131 Z3)

N

qa.

(A2.6

Note that, for a sample of values Szi is 1. However, it does not follow

that Szi = 1, In order to evaluate this last Ss we may think of ZI as

being made up of two parts - that which we can estimate plus a residual*

ZI = Zt + Z
1.

It can be shown that these two parts are independent of each other. Hence,

their variances are additive:

2 21

Sal Szi Sa21.23



or

then

1 = s2, s2
s1.23

S
2

1
ist 1 S

2
sl 1g1.23

-A17-

2
However, is is nothius more than the variance of the prediction errors

as given by (A2.7); hence this becomes by substitution of (A2.7)

Bzi " t/B2* r B44' r12 3 13

The*, by substituting (A2.9) in (A2.8), we have

R1.223 E Zl ( Z2 + B1 Z5)

VB21 r12 B1 r13

PEZ Z + B*EZ Z
2 1 2 3 1 3

N P r12 + 31 r13

VR r12 11 r13

(A2.9)

(A2.1o)

liiost formula (A2.10) and (A2.7), we see that we can write the

standard error of estimate in raw score form as

SI.23 mg Si 1 - R1.23 (A2o.i)

This formula may be used to define the multiple correlation coefficient.

The relationship is

2

R2 23
1..23

1.

82
1

By substituting from (A2.7), we again have (A2.10).

1
2

S
1.23

(A2.12)



At this point, we may note the similarity of formula (A2.11) to

the standard error of estimate for the bivariate situation. Thus, the

interpretation of the correlation coefricient in terms of reduction in the

error of estimate holds for the multiple correlation coefficient in ex-

actly the same manner as for the ordinarry bivariate correlation coeffi-

cient. Furthermore, the interpretation in terms of proportion of var-

iance explained also holds for the multiple correlation coefficient.

However, in the case of two predictor variables, we find some interest-

inglifferences. Let us explore those peculiarities.

We must answer the question as to the relati4a importance of

the two pA:edictor.variables as contributors to variation in the criterion

variable. Obviously, the B coefficients in the raw-score regression

equation cannot be interpreted as indicating the relative contribution

of the two independent vartables since the two 3 coefficients usually

involve different units of measurement. Therefgre, a 82 twice as large

as B3 does not imply that B2 is twice as important as 153. However, the

variables in standard-score form will be comparable and hence the beta

coefficients in the'standard-score form of the regression equation will

be comparable. Since

or

and

2 2
Sy04 S si + S2

1.23

1 S + S2
1 s1.23

2
Ss1.23

me P2
I. 23
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it follows that

2
In words, 111 .23 "Mich corresponds to the proportion of variance explained

by variables 2 and 3 is equal to Slit, or the variance of the predicted

stand rd- scores.

On the other hand, note that, since

Z1 B Z2 +
o
Z3

we can indicate the value of Sgt as
sl

which

81.23
= S2g = E (Z1)

2
= (B! z2 + B1 z3)2

*1

al Be z z2 + z2 + 2Bg VEZ Z
3 3 2 3

2 2

1.23
= S - B*2 + B*2 + 2:B*Bilr

si 2 3 2023
(AS:. l3)

In short, the predicted variance, which corresponds to the "explained"

variance, can be broken down into three additive components. Further-

more, we zee that the relative impoitance of the variables X2 and X3 in

"empiaining" variation in R1 can be judged by the magnitude of the squares

of the beta coefficients. The third term in formula (A2.15) represents

a joint 3ontribution which is a function ki,f the amount of correlation

between the two predicing varlables.

144.2. More Than Three-Variables. The extension of multiple

correlation and regression to include any number of variables involves



the same principles as for the three-variable case. In other toads,

the interpretation of the regression and correlation eoefficients is

the sem for u as for 3 variables, and the extension of the formulas

should be obvious.
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